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Abstract—With the uptake of electric vehicles (EVs) promoted
by many governments, the impact of electric vehicles on electricity
grids will become significant in the near future. In Australia,
charging a typical EV battery puts the same demand per day on
the grid as an average household, which could lead to a sizeable
increase in peak demand. However, the negative impacts of EVs
can be mitigated if their charging is scheduled during times of
otherwise low demand, such as overnight. The majority of studies
trying to achieve this require a certain level of coordination
among EVs and/or a central controller. In many countries,
however, the hardware and infrastructure required for central
charging methods do not exist. Here EV charging is approached
from a distributed point of view, and a protocol in which charging
decisions are made individually at each household, without any
access to full network state is proposed. The decision making
process is conducted in real time, using both instantaneous and
historical local voltage measurements to estimate present network
load. The overall goal is to maximally use grid capacity at all
times, while still ensuring fairness of charging for all users. The
proposed algorithm ensures both charging efficiency and fairness
among all EVs across the network. At the same time, peak
demand in the grid is minimally affected. Simulations based on
a realistic suburban network using real demand data and vehicle
travel profiles is presented to illustrate typical performance.

Keywords—Distributed control, Electric vehicles, Power system
planning, Smart grids, Voltage measurements

I. INTRODUCTION

Electric vehicles (EVs) have many advantages over internal
combustion engine vehicles technically, environmentally and
financially [1]. However, due to the high capacity of EV
batteries, if every house had an EV to be charged, the current
load in grids would be nearly doubled [2]. Many studies have
shown that without any control over the charging, failures
or unacceptable electricity quality will occur in the grid
frequently even with a small EV penetration rate [3], [4].
On the other hand, for most of the time during the day, the
installed capacity of distribution networks are not fully utilized.
In Australia, Victorian customers use less than 50% of grid
capacity for more than 50% of the time especially during off-
peak hours [2]. The huge spare capacity caused by uneven
demand in networks has inspired many energy management
algorithms for smart grids to deal with the charging problem.

There are two approaches to address the charging problem
from the demand side. One is to manage the distribution
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network in a centralized way where a central controller com-
municates with each EV and calculates a suitable charging
profile for each vehicle based on the global information
[5], [6]. The other is for each EV charger to calculate its
own charging profile in a distributed manner [7]-[14]. The
centralized approach requires all agents to participate in the
decision making process and this incurs a large communication
and computational cost, especially if the network is large. The
distributed approach is simpler and less costly, but also less
effective especially if it only makes use of limited information.

Distributed algorithms can be formulated in several ways.
The recent works [12]-[14] adopt a similar approach to
ours and study Additive Increasing Multiplicative Decreasing
(AIMD) alike algorithms, which are proven to be an effective
way of deciding the charging rate for EVs. Although the
decision is made at each household, [12]-[14] and most of
the distributed algorithms in the literature require active or
passive communication with central agents. However, such
communication infrastructures are not immediately available
in most countries and building new infrastructure incurs huge
costs. A conceptual product named nPlug is introduced in [15]
which manages the demand of home appliances based on only
local voltage measurements. It has been shown that the nPlug
performs effectively in alleviating peak demand in India. The
nPlug is designed for home appliances with on and off settings.
This approach leads a trend towards a demand management
solution that requires as little communication as possible.

In this paper, we present a distributed algorithm based only
on local voltage measurements, as similar to [15], to control
EV charging, and hence demand. The algorithm uses varying
charging power and passive back-off strategy to ensure grid
safety and to maintain supply quality. Our algorithm also aims
to address the fairness issue among EVs via self correction of
each participant. The performance of the algorithm is studied
through realistic simulations and compared to centralized and
uncontrolled charging.

The rest of the paper is organized in the following way.
Section II describes our research model as well as some
background information. Section III introduces the algorithm
and the analytical principals behind it. Section IV presents
simulations of our algorithm on an actual Australian suburban
distribution network. Section V concludes this paper and talks
about the future plans.
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Figure 1. A diagram of an Victorian suburban distribution network of 114
houses fed by a 300kVA distribution transformer. Triangles denote houses on
phase A; rectangles denote houses on phase B and circles on phase C.

II. MODEL
A. The Grid and EV model

We focus on the low voltage distribution networks which
consist of transformers and all households along the distribu-
tion lines. Figure 1 shows the low voltage (LV) distribution
network we used for simulation based on actual Victorian
suburban networks. Houses including EVs are modelled as
resistive inductive capacitive (RLC) loads which consume both
real power and reactive power. Backbones and service lines are
modelled as RL loads based on actual data.

It is assumed that each EV charger has a digital controller
embedded which is able to read local voltages, battery State of
Charge (SOC) in percentage and perform calculations to give
charging instructions.

There are some inputs a controller requires from the users.
The charging start time ¢, is the time when the EV is plugged
in. The user needs to input an expected finish time ¢. which
is when the EV needs to be ready for departure. We assume
in this paper that users behave rationally and do not cheat
by setting a finish time that occurs long before they need to
depart. The users’ behaviours can be regulated by introducing
price incentives, which is an ongoing research topic.

The required SOC level S, is usually 100% upon finishing
but a user could overwrite such a value. The controller also
records the initial SOC level S; when the vehicle is plugged
in. The sensing of controllers are executed in a slotted manner
with equal slots of several minutes. The slots for each EV are
equal in length, but they are not synchronized across EVs. At
the beginning of each slot, each controller monitors the SOC
level S(t), the local voltage V (¢) and calculates a charging
level which is maintained for the duration of that slot.

EV travelling models are based on real data from the
Victoria Government EV trial project !. A typical average
workday EV travel profile in Victoria is shown in Figure 2.
We only examine residential networks in this paper where EVs
can only be charged at home and charging in the workplace
is not considered.

Idata available at http://www.transport.vic.gov.au/projects/ev-trial
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Figure 2. An average workday EV travelling profile generated from a sample
of size 100 from of EV trial project database.

Figure 3. A model of a three phase resistive network

B. Local voltage model

Ideally, it is desirable to make charging decisions based
on the average amount of spare capacity in the network for
each EV, such that the total demand does not go beyond the
limit. However, the total spare capacity information is not
available at each household and it is not possible from local
measurements to know the number of EVs that are charging.
In such circumstances, we will use local voltage to estimate
such values. It has been explained in [15] that it is possible
to indicate spare capacity in the grid using local voltage. We
will explore this method in more detail.

Consider the one phase of a radial distribution line con-
necting a n houses as depicted in Figure 3. Even though
most houses are creating complex loads, the power factor in
a modern grid is close to 1 so that the resistive components
dominate the power flow in a grid. We therefore simplify our
grid as a resistive DC network. In Figure 3, z,, n = 1,2, ...
represents line impedances and V' is the constant voltage level
that the transformer supplies. I is the total demand of current
in the network and I,,, n = 1,2,... denotes the current in
the nth branch which may consist of several houses or sub-
branches. With this simplified DC model, we shall see that at
any time
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Let I,,,4, be the threshold supply current, the available spare
current or discrete current I; = I,,,,. — I. Therefore, from
line 1 of (1), the spare capacity in terms of current is propor-
tional to the voltage level at house 1. As for houses located
further from the transformer, the proportional relationship will
become weaker due to the demand of preceding houses in
location. Therefore, we cannot accurately calculate total spare
capacity from local voltages. However this weak proportional
relationship can still be used by controllers to estimate spare
capacity and make preliminary decisions. In addition, when
total demand is too high, local voltage at each house will be



low compared to its own voltage profile. Therefore, we can
use a low local voltage level as a triggering message telling
controllers to stop or slow down.

III. DISTRIBUTED ALGORITHM

Algorithm 1 Fair EV charging with local measurements
Require: t,, t., 7, k, V(t), Vmin, Vmaz, Se, S(t), Sss Tmaz

1 r(t)=0 > initialization
2: Swanted = Se - Ss’ T=1t,—ts

3: B = Syanted/T > average charging rate
4: if S, — S(t) <0 then > check if fully charged
5: charge (OFF)

6: else if V(t) — Vppin < O then

7: r(t) =0.5r(t —1) > drop to half
8: charge (ON)

9: else

10: C <+ (Se—5(t))/(te —t) b required charging rate
11: Ar(t) < k*rmaz * (V) = Vinin)/ Vinaz — Vinin)
12: r(t) < (r(t—1)+ Ar(t)) x (C/B)

13: charge (ON)

14: charge rate = min{r(t), 74z }

15: end if

16: keep charging for (7)

17: goto (step 4)

The proposed distributed EV charging algorithm for each
individual EV is summarized in Algorithm 1. Accordingly,
each EV controller will independently execute the Algorithm
1 as soon as the EV is plugged in. The parameter T denotes
the time slot which can be a few minutes and the constant
k controls the power increment step size (with a large k, the
charging profile will exhibit more spikes). The constants V' .y,
and V4, are the threshold values on local voltages which will
be used to regulate the total demand in the grid, i.e. when the
total demand is too high, the local voltages will drop below
the threshold and EVs will decrease their charging rate. V iy,
and V.. can be obtained from historical data. V,,,, can be
calculated simply as the average of maximum voltages over the
last 10 workdays and V,,,;,, can be a certain portion of V4,
for each EV. Note that data on weekends, weekdays, holidays
will be classified in different sets since the demands behave
differently. The variable V (¢) is the local voltage sensed and
T'maz denotes the maximum charging power. The charging start
time is ¢, and finish time is ¢.. The SOC start, finish and
current level is S, S. and S(t) respectively. We assume all
EVs use identical batteries such that dS(t)/dt = r(t)/c where
c is a constant relating energy to battery percentage change.

While controlling EV charging from a distributed point
of view, it is very difficult for individual EV controllers to
coordinate or communicate with others without additional
complexity and infrastructure. Therefore, it is natural for each
EV to take power greedily if it is safe to do so. By greedily,
we mean that each EV tries to make charging rate as high as
possible such that the set of all charging profiles at ¢ is close or
equal to a solution of (2). And we will show the performance
via realistic simulation.

N() ?
minimize C(t) — T (t
minimize, (€0 =3 () .
subject to 0 <7,(t) < e, (O)Tn(t), n=1,...,N(t),
Sp(t) <SPn=1,..,N(t)

The parameter e, (t) which is either 0 or 1 is the travelling
profile for EV n at time ¢ denoting whether the EV is away
or at home respectively and r, is the charging profile for
vehicle n which is the main dependant variable for our system.
S? is the intended SOC level upon finishing the charging
for EV n. 7, is the maximum charging power limit for
EV n. Also the total number of EVs plugged in at time
tis N(t) = 25:1 en(t) where N is the total number of
houses with EVs. T, is the total charging time for EV n and
C(t) = max{0,E(t) — D(t)} is the spare capacity where
E(t) is the greedy threshold and D(¢) is the total non-EV
demand in the distribution network.

In (2), C(t) is not directly measurable and the equations
show an ideal case of our intent. However, each EV could
estimate the spare capacity in the grid using local voltage as
explained in (1). Generically, the minimum voltage thresh-
old corresponds to the maximum level of power E(t) the
transformer is willing to supply. Each EV gradually increases
its charging power asynchronously to others till the network
threshold is reached. The charging power increments are
determined in proportional to the spare capacity in the grid
as in (3). When the grid limit is about to be reached, the
increment of power for each EV will be smaller and smaller
to avoid sudden violation of grid constraints.

V(t) — Vinin

Vmax - szn

Fairness is important while developing EV charging algo-
rithms. Due to location and load conditions, when using the
greedy algorithm, it is always the case that some vehicles have
charging advantages over the others. However, we do not want
any EVs to be unduly disadvantaged. Though it is not possible
to communicate with other households, EV n has an average
charging rate, S — ST /t? — ¢7, calculated from user settings
which can be used as a benchmark charging speed. In this
paper, we assume there is a price incentive such that users
plug in their EVs as soon as they get home and set the finish
time as late as possible to avoid paying extra. At time ¢, we
apply (4) to calculate a correction factor p(¢) which is used to
manipulate the current charging rate to keep it consistent with
benchmark charging speed. What (4) does for EV n at time ¢
is to determine how much faster/slower it has to be charged
after ¢ such that S7' can be achieved right at ¢t'. Note that
discontinuous and varying rates of charging will be used in our
work which potentially increases batteries lifespan since it does
not produce as much accumulated heat in batteries as charging
with full power [16]. These steps will be repeated until local
voltage reaches the threshold value in which case, the power
will be dropped to half to ensure safety and electricity quality
across the grid.

Ar(t) = krmaz 3)
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Figure 4. The performance comparison of the uncontrolled charging(first column), centralized charging (second column) and distributed greedy fair charging
(third column). The first row shows the demand of households and EVs over a particular day, the second column shows the battery SOC level of all EVs in
the network where each colour represents a vehicle. Sudden drops indicate vehicles arriving at home and gradients of curves denote the charging rate. Long

horizontal lines before dropping indicate the EV being away.

IV. CASE STUDIES AND RESULTS

We ran simulations for our algorithm on a real Victoria
suburban distribution network with 300kW installed capacity
and 114 households as in Figure 1. In order to really test the
algorithm, the simulations assume an EV penetration rate of
80% with real demand profile and EV travelling profiles. The
software packages used were MATLAB SimPower toolbox for
load flow calculation and POSSIM Simulator > which provides
an interface to MATLAB for control actions.

We present three sets of simulations in this paper. The first
set is the grid operating with no control over EVs. The second
set is an implementation of (2) where the central controller has
perfect knowledge of how much spare capacity the grid has
and how many EVs are plugged in. Therefore the controller
is able to distribute spare capacity equally among all agents.
This algorithm is a centralized version of the greedy algorithm
presented in [17]. The last set is our distributed greedy fair
charging algorithm.

Here we use the average of maximum historical local
voltage over 20 days as V4, for each household. Then V ;.
is calculated as V,,;n = J * Viynae where j is a constant
relating to the greedy threshold E. Since a direct calculation
for I/ from voltages is not accurate, we will need simulations
to assist voltage level setting and can be done easily with a
few simulation trials. In our experiments, the greedy threshold
E(t) is set to 110kW to simulate grid behaviour under limited
resource and the corresponding j is 0.97.

Figure 4 consists two categories of diagrams. The top
set shows the aggregated demand of all EVs, aggregated
household non-EV demand and their sum. The lower set
shows how the SOC level of each EV changes over time.

Zavailable at www.possim.org

During the middle of the day, most EVs are out and there
is not much EV demand in the grid. Since controllers do
not have access to SOC levels while EVs are travelling, the
SOC levels are therefore shown as constants when EVs are
away and adjusted as soon as the vehicles are plugged in. We
can see that without control, additional EV load will cause
significant peak increase which affects not only electricity
price but also electricity quality. The centralized algorithm
makes very good use of spare capacity in the grid and the
total demand when most of EVs are plugged in oscillates
between 100kW and 120kW. The oscillation is caused by
the synchronous behaviour in simulation. The distributed fair
charging algorithm also controls peak load well and moves the
majority of EV demand to the overnight valley. Almost all EVs
are charged to above 80% in our algorithm. Even though it is
not as good as the centralized algorithm, the results for the
distributed algorithm are still impressive given the difference
in the amount of information used in two strategies. It is worth
noting that due to fairness correction, in early morning, EVs
with high battery level reduces their charging power and those
with low battery level tend to have a steep charging profile.

Figure 5 shows the local voltage on each phase for each
house. Phase A in the uncontrolled case drops below distri-
bution code regulated level 216V. Both the centralized and
distributed algorithms keep the voltage within range. There
are more voltage fluctuations in the distributed algorithms
and this is because we used 50% power back-off to ensure
safety. In practice, the issue can be resolved by asynchronous
decision making among EVs and a smaller power back-off
size. However, the voltage is already well within limits.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a distributed greedy fair
charging algorithm for EVs in a smart grid. Unlike all other
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Figure 5. The household local voltage levels of the uncontrolled charging(first column), centralized charging (second column) and distributed greedy fair

charging (third column). The first three rows show the voltage of individual houses on individual phases; each color denotes a house.

algorithms, our method is based totally on local information.
By simulating an actual distribution network, we have shown
that, even with a high 80% penetration rate, the distributed
greedy fair algorithm successfully mitigates peak demand,
ensures battery level and fairness without breaking any grid
constraints. Even though the performance is not as efficient as
a centralized solution, given the amount of information used
in our algorithm, the result is remarkable. What’s more, our
solution is in a ready to use state and requires no upgrade of
the current grids’ infrastructure. In the future, when smart grid
communication facilities are well developed, our algorithm can
be easily modified to generate more accurate outcomes. There
are several projects that our group is currently working on. One
is the investigation of how to manage the behaviour of EVs
and home appliances given local smart meter data; another
direction is the price incentive for customers and their EV
charging behaviours. We also would like to investigate ana-
Iytically differences in the results from a distributed approach
and a centralized algorithm.
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